80

THE KIND OF PROBLEM A SOFTWARE CITY IS

CHRISTIAN ULRIK ANDERSEN & Sgren Pold

New urban interfaces introduce software to the city. To understand software cities we must compare
the city with the software at a specific level. Building on the architect Christopher Alexander’s idea of a
‘pattern language’ the article will present the activities that urban software fosters, and question how
the underlying computational processes change the complex life forms of the city, and the response of
urban planners.

The final chapter in Jane Jacobs’s The Death and Life of Great American Cities, from 1961, is entitled
"The Kind of Problem a City Is." In it, she gives an account of the relations between urban development
strategies and the progression of science. From being able to deal with problems of simplicity and disor-
ganized complexity, science in the 20th century became capable of managing organized complexity. Sta-
tistical material and mathematics made it possible to manage a large number of variables as an organic
whole. So-called ‘urban renewal’ projects were launched in both the United States and Europe to solve
the urban problem of disorganized complexity. Slum areas that, according to statistics, had high rates of
crime, infant mortality, and so on, were replaced with new and efficient infrastructures and a geographi-
cal separation of the use of the city into areas (residential, commercial, industrial, etc.). Several cities
have been ‘renewed’ from the fifties onward by replacing urban areas of high complexity and diversity
with new and functional areas of low complexity and diversity. Jacobs, however, claims that many urban
planners do not know much about the actual interactions that take place in the city. [1] In contrast to
this, they need “to think of cities as problems in organized complexity — organisms that are replete with
unexamined, but obviously intricately interconnected, and surely understandable, relationships.” [2]
They must seek to think in processes that explain the general by the specific, rather than in statistical
information that oppresses people and their relations.

In many cities today, the infrastructures no longer just consist of buildings, roads and paths but also of
information flows embedded in software interfaces and networks (smartphones, tablets, wireless net-
works, surveillance systems, media displays, etc.). The software itself in many ways provides the means
to effectively map out how the software city is used; for example, which smartphone applications are
the most popular, what areas are under surveillance, or even the whereabouts and routines of an indi-
vidual. Is it possible not to reduce our use of the software city to information overviews but instead
focus on the specific use of the software city? Taking a lead from Jacobs, we need to ask ourselves what
kinds of specific life forms occur in this environment and how we support their diversity and complexity.
Architecture itself provides good techniques to do this.

In the 1970s, the architect Christopher Alexander, inspired by Jacobs, developed the notion of ‘a pattern
language.” A pattern is a way to summarize experiences, individual practices and practical solutions in a
way that makes it possible for others to reuse them. Alexander’s book comprises of 253 patterns, each
with its own context, problems and solutions that sometimes help complete larger patterns or need

81

other patterns to be completed. As an example, Alexander uses the pattern ‘accessible green’ based on
the observation that people need open green places to go to; but when they are more than three min-
utes away, the distance overwhelms the need. Consequently, green spaces must be built “within three
minutes’ walk [...] of every house and workplace.” [3] This pattern helps fulfill larger patterns such as
‘identifiable neighborhood’ and ‘work community.’ [4]

According to Alexander, “towns and buildings will not be able to come alive, unless they are made by all
the people in society.” [5] The general idea is that a successful environment depends upon an ability to
combine physical and social relationships. The pattern language creates such combinations: it is a lively
language, not exclusive to architects, that responds to the needs and desires of the people and thus con-
nects architecture to people. Alexander’s book is a pattern language for towns, buildings and construc-
tions, but this pattern language is only one amongst many. Any society, or even individual, will have
their own languages to combine the physical with the social. However, the problem is that these lan-
guages are often not very sophisticated; people are unable to speak and must therefore develop their
own language. [6] By suggesting that architecture and urban planning at the time was built on a lan-
guage that was not refined, he implicitly raised the same critique of modern urban planning and archi-
tecture as Jacobs: architecture that is merely functional, and does not build on social relationships, is
brutal. A successful environment must be sensitive to the needs, desires, hopes and aspirations of the
people living in the environment.

If Alexander provided the beginning of a pattern language for towns, buildings and constructions, how
developed, refined and sophisticated is our pattern language for software cities? To what extent do we
build an awareness of our social relations, and not least our needs and desires for these relations, into
the process of making the software city?

Alexander’s ideas have in many ways been more influential in the design of software systems than in ar-
chitecture. This means that the pattern language for software development is quite sophisticated. Be-
fore we begin to critique the level of refinement in the pattern language of the software city, let us con-
sider the experiences created in software development.

Design patterns in software development express a relation between programming, design, and use.
This is particularly evident in the Scandinavian participatory design tradition, which in the 1970s had al-
ready begun to focus on how to bring the different stakeholders of a workplace into the process of sys-
tem development. Participatory design not only includes the design of human-computer interfaces but
also the technical parts of system development. Ward Cunningham, a pioneer in this field, initiated the
Portland Pattern Repository that in the mid-nineties was accompanied by the WikiWikiWeb: the world’s
first wiki. It consists of numerous patterns that, using the schemata of Alexander in general ways, de-
scribe problems and solutions in graphical user interface design and programming. [7]

‘Ward’s wiki’ became popular because it allowed programmers to share and co-edit their experiences.
By using this, they developed a sophisticated pattern language that combined the human use situation
with the structure of the program; similar to Alexander’s vision of a pattern language for towns, build-
ings and constructions. The combination of physical and social relationships has, however, also been
corrupted along the way.

82

Firstly, the sharing of a language, which was the starting point for the Portland Pattern Repository, has
partly disappeared. With the exception of open and free software projects, the code of software is copy-
righted and not accessible to other programmers. Secondly, and partly related to this, interface design
patterns seldom combine the physical and social relations in an 'open' way. In today’s interface design it
is compulsory to meet the user at eye-level in order to combine the physical and social relations in a
'useful' way. Software successfully responds to the needs and desires of its users to write text, edit im-
ages, collaborate, socialize, play, and so on; and developers regularly consult its users via interviews,
guestionnaires, supervising debate forums or even by letting them produce add-ons to their program,
like apps in Facebook or macros in World of Warcraft. However, it is not desirable to discuss our social
relations merely in terms of ‘ease of use.” Social relations demand openness to the actual patterns of the
users. The patterns of use should not only encompass user-friendliness but also other ways of using, in-
cluding unintentional use and even oppositional or critical use. If not, pattern language does not re-
spond to the needs and desires of social life.

Massive multiplayer online games illustrate this very clearly. Here, life is obviously not restricted to what
is ‘in the box’: participants produce strategy guides, additional stories, make t-shirts, etc. However,
game developers will often try to seize control of these activities. One example of this is the WoWGlider,
a third-party program that automatically controls a player’s character via scripts. The program, and simi-
lar ‘glider bots’ are popular because they allow players to acquire game skills without being present in
the game. In 2006, a "high ranking officer of Vivendi" and a lawyer for both Vivendi and Blizzard (the
game developers of World of Warcraft) approached the maker of WoWGlider (Michael Donnelly) at
home, and accused him of violating their copyrights. [8] Later, they also filed a lawsuit and his company
was eventually sentenced to pay Blizzard six million US dollars. This is just one amongst several exam-
ples of how the interests of players and game developers are in conflict. It has nothing to do with the
usability of the game but is entirely a political issue: in order to protect their software and develop their
business, developers prohibit certain types of behavior.

Today, software is no longer just for work but a platform for social life, and examples similar

to WoWaGlider are growing in numbers. The challenge for participatory software design today is to not
only include people’s use in the design of software but also openness towards creative and alternative
use. In this, political issues concerning ethics and ideology become increasingly important, and conflict-
ing interests and unbalanced relations of power and control often restrict the development of a lively
pattern language. Successful examples are rare, but are, for instance, found in the FLOSS movement
(Free/Libre Open Source Software) that explicitly combines the openness of technical structures to, for
example, individual freedom and the refusal of intellectual copyright. [9]

The software city is to a large extent a non-work context where issues similar to the ones that are no-
ticed in social software are relevant. In developing a pattern language for software cities, the first step is
to critically evaluate the way we currently combine the physical with social relations (technical infra-
structures with the complexity of life), in the software city. Experiences with both social software and
FLOSS are valuable in this context.

The standard image of a software city is somewhere where media saturation is obvious and clearly visi-
ble, like Shibuya in Tokyo or Times Square in New York. However, less spectacular implementations of
software in cities also demand attention.

83

We have previously studied the digital layers of the mid-sized Swedish town Lund. In general terms, we
found that software is embedded via ‘log-in spaces’ (as found in restricted networks of various sorts)
and ‘iSpaces’ (as found in the individual use of personal and mobile laptop computers, tablets or smart-
phones), paired with a ‘hypertextual connectivity’ that connects physical space with virtual networks (as
found when, for exmaple, a location-based smartphone application links to a social web service). [10]
Both log-in spaces and iSpaces suggest that the migration of software into urban space propagates two
kinds of activities: surveillance and configuration.

As a general pattern, surveillance is not only visual but also structural. Surveillance does not only take
place via cameras but also, and more often so, by following seamless transactions: for example, when
logging on to a network, transferring money, or using personal identification numbers to keep records.

As a way of interacting with software, configuration means to change a system on a user level, including
actions as diverse as image editing, setting software preferences or shooting monsters in a computer
game. Configuration patterns are found when we use the software city to play games, socialize via ser-
vices such as Facebook or Twitter, find weather reports, use a GPS for creating routes, etc.

Surveillance and configuration patterns reflect two particular and interrelated views on the public
sphere: 1) When public wireless networks are restricted and its users tracked it is to avoid violations of
copyrights, illegal conspiring, terrorism, and so on. Hence, surveillance fulfills a need to protect land and
property. 2) When |, using my smartphone apps, can find information about the place | am, connect to
my friends anywhere in the world or track my whereabouts and share them in public, the configuration
pattern fulfills a need to support the exercise of the individual.

In this sense, inhabiting the software city is like inhabiting The Sims. The ability to perform as an individ-
ual in this environment is equal to the sum of acquired platforms (smartphones, credit cards, laptops,
etc.) and applications (location-based guides or social networking software such as Facebook,
Foursquare or Twitter) one possesses — similar to the acquirement of objects as a way to increase one’s
character level in a game. Every action is registered by the system, and you are given the right to config-
ure the system, but you are never given the right of a citizen to negotiate the system itself. The problem
of the software city is the same as in many computer games: life does not always fit into the box of the
game. Actions such as evading surveillance, hacking networks and disrupting configurations are often
considered illegal. Even common practices such as information sharing is considered a violation of copy-
rights. In this sense the physical infrastructures of the software city do not always correspond with the
social practices and desires of the people. At the same time, we must also consider that life in the soft-
ware city fits surprisingly well into a box. People do not mind ‘living in The Sims.” Surveillance is widely
accepted, and though CCTV is often part of public debate, registration of computers, tablets or smart-
phones on the Internet is widely accepted; which is similar to the tracking of money transfers when peo-
ple use their credit cards or smartphone apps for Internet banking. Likewise, people generally do not
critically evaluate their use of location-based or social services for their smartphones, as long as there is
a benefit to them.

To discuss the software city in terms of ‘ease of use’ may prevent the development of a diverse software
city. The software city must therefore encompass the idea of citizenship, where the combination of
iSpaces or log-in spaces with our social relations can be debated openly and lead to new visions. This de-
velopment of a shared pattern language for the software city also implies critique of urban planning.

84

Though our use of software in the city is rarely planned, the software cities themselves are planned, and
are usually thought of as ‘smart cities’ and ‘media cities.’

Smart cities cover a range of initiatives. The general idea is that a city’s performance is dependent on its
ability to support and include aware citizens in issues such as economy, governance and sustainability.
This demands that, for example, the people can be smart: that they have the necessary infrastructures
to communicate, a high level of education, a pleasant environment with secure health systems, no crime
and a rich cultural life, and so forth. [11] This is supported by current developments in software, for ex-
ample, cloud computing, where services are offered via a network and thus support the mobility of the
citizens. However, city planners and governors can also use software for data monitoring, analytics and
visualization to sustain the smart city. This may include a wide range of services that compute and visu-
alize data for crime, education, traffic, energy consumption, etc. These are not only management tools
but are also tools that involve the participation of the citizens, such as, for example, reporting the water
quality via a smartphone application. [12] The general idea is to not only anticipate but also innovate
through data analytics.

Smart city initiatives appear to combine a city’s physical infrastructure with its social and intellectual
capital. Learning from our critique of the use of patterns in software development, we must however
also realize that in the smart city urban life is programmed into the software in ways that do not always
correspond with the citizen’s practices, needs and desires. To develop a sophisticated pattern language
we should not only debate the ‘usability’ of cloud computing or how monitoring systems make a ‘safer
world’ (patterns of surveillance and configuration), but also some of the issues that are at stake in social
software. Smart cities, for instance, heavily affect our perception of private and public. In other words,
we need to reflect on what a common good means; who owns the data; what it is used for; when it is
public/private; how it is monitored; how it is visualized; what data visualizations are used for, etc.

Media cities involve using software as a spectacle that can evolve new neighborhoods. The urban re-
newal project MediaSpree in Berlin is an example of this, out of many across small and large cities. In the
past decade, large property investments have been planned along the banks of the river Spree in the
Eastern parts of Berlin. The aim is to create high profile architecture that integrates media, small and
large-scale use with public access to the river. [13] For various reasons (including lack of capital) many of
the MediaSpree initiatives have been interrupted and several places are temporarily occupied by cul-
tural initiatives; including the Berlin techno scene and clubs such as Club Maria, Berghain, Bar 25 and
Tresor. In MediaSpree, the integration of media in architecture via displays and fagade media is aimed at
creating a spectacle that attracts people. In contrast to this, the media integration of these clubs is al-
most invisible at street level, but nevertheless very evident. The club scene is part of a global network of
electronic music enthusiasts, connected via blogs and other services for cultural co-production. Every
weekend thousands of people fly to Berlin to take part in the scene. Even though the club scene is not a
clearly visible architectural landmark, indeed it often strives to be invisible, it is a lively part of Berlin and
an attraction that possibly even outshines many of MediaSpree’s initiatives in terms of city life and
branding. [14]

The smart city and the media city each in their own way demonstrate how the software city often is con-
trolled top-down by corporate and urban planners. However, the development of a diverse software city

85

does not have to be spectacular or ‘smart.” Although media architecture, cloud computing and data visu-
alization should not be dismissed, there is a need to focus on the spaces in-between that do not have
clear ownership, areas “devoid of meaning,” as the Danish sculptor Willy @rskov has defined the ‘ter-
rain-vague’; spaces that can be of potential significance. [15] These spaces may be physical locations,
like the banks of the Spree, but they may also be spaces for new software-based practices. It is in these
spaces that we see glimpses of the software city as something other than just log-in spaces or iSpaces. In
other words, there is a need for a new pattern language for the software city that is based in emergent
cultural practices appearing in the terrain-vague; a language written by people, rooted in their practices
and a sustainable combination of social relations with the physical infrastructures of software.

This research has been funded by the Danish Council for Strategic Research, 09-063245, (Digital Urban
Living).

References and Notes:

1. Jane Jacobs, The Death And Life of Great American Cities (New York: Random House and Vintage
Books, 1961), 10.

2. Ibid., 438-9.

Christopher Alexander, et. al., A Pattern Language: Towns — Buildings — Construction (New York:

Oxford University Press, 1977), 305-8.

Ibid., xiii.

Ibid., x.

Ibid., xvi-xvii.

Cunningham & Cunningham, Inc., “Nouns and Verbs,” http.//c2.com/cgi-bin/wiki?

NounsAndVerbs (accessed June 28, 2011).

8. Brandon Boyer, “Blizzard, Vivendi File Suit Against WoW Bot Creator,” Gamasutra Website,
http.//www.gamasutra.com/php-bin/news_index.php?story=12848 (accessed June 28, 2011).

9. This has also been named a ‘recursive public’ concerned with the “maintenance and modification
of the technical, legal, practical, and conceptual means of its own existence as a public.” In:
Christopher M. Kelty, Two Bits: The Cultural Significance of Free Software (Durham: Duke Univer-
sity Press, 2008), 3.

10. Christian Ulrick Andersen and Sgren Pold, “The Scripted Spaces of Urban Ubiquitous Computing —
the Experience, Poetics, and Politics of Public Scripted Space,” in Fibreculture Journal 19, ed. Ulrik
Ekman, December 9, 2011, http://nineteen.fibreculturejournal.org/fcj-133-the-scripted-spaces-
of-urban-ubiquitous-computing-the-experience-poetics-and-politics-of-public-scripted-space/
(accessed April 1, 2012).

11. European Smart Cities, Homepage, http://www.smart-cities.eu (accessed June 28, 2011).

12. IBM Website, “IBM: The Smarter City,” http://www.ibm.com/thesmartercity (accessed June 28,
2011).

13. Wikipedia, “Mediaspree,” http.//de.wikipedia.org/wiki/Mediaspree (accessed June 28, 2011).

14. Tobias Rapp, Lost and Sound: Berlin, Techno und der EasyJet (Frankfurt/M.: Suhrkamp, 2009).

15. Willy @rskov, Terrain-Vague (Copenhagen: Borgen, 1992), 27.

w

NS LA

